Q.P.	Code:	16CE1	18
------	-------	-------	----

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations August-2021 CONCRETE TECHNOLOGY

(Civil Engineering)

R16

Time: 3 hours Max.			
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I		
1	a Explain heat of hydration and hydration process of cement in detail.	6M	
	b Explain setting time of cement and factors affecting setting time of cement.	6M	
	OR		
2	a How do you conduct sieve analysis on coarse aggregate in the laboratory?	6M	
	b Differentiate between gap grading and well grading of aggregates.	6M	
3	a Explain the phenomenon of gain of strength of concrete with age.	8M	
	b Calculate the Gel/space ratio and the theoretical strength of a sample of concrete	4M	
	made with 500 gms of cement and 0.6 w/c ratios, on full hydration and 70% hydration.		
	OR		
4	a Explain the Maturity concept for strength development of concrete.	7M	
	b Explain the relation between compressive strength and tensile strength of concrete.	5M	
5	a What are the various factors affecting the compressive strength of concrete?	6M	
	b Explain in detail about the rebound hammer test (NDT) that is conducted on existing	6M	
	structure to assess its strength with a neat diagram.		
	OR		
6	a Draw the typical stress-strain curve of concrete and explain the various modulus of elasticity.	5M	
	b Draw the stress-strain curves for aggregate, cement paste and concrete and explain the behavior for each of them.	7 M	
	UNIT-IV		
7	Design a concrete mix of M20 grade for a roof slab. Take the standard deviation of 4 MPa. The specific gravities of coarse aggregate and fine aggregate are 2.67 and 2.7	12M	

respectively. The bulk density of coarse aggregate is 1620 Kg/m3 and fineness modulus of fine of aggregate is 2.76. A slump of 50mm is necessary. The water absorption of coarse aggregate is 1% and free moisture in fine aggregate is 3%. Design the concrete mix using ACI method. Assume any missing data suitably.

OR

8	Explain the mix d	lesign procedure o	f concrete as per IS	S code Method.	12M

UNIT-V

9 **a** What is light weight concrete? How is it produced. **6**M **b** What are the light weight aggregate concrete. **6**M

OR

10 Explain high performance concrete and what are the advantages of high performance 12M concrete over conventional concrete.

*** END ***